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Goal: Develop material and process understanding leading to increased process yield and granule This work is sponsored by Lincoln Electric,
strength for a Submersible Arc Welding (SAW) flux composition. Cleveland, OH
Approach:

1) Investigate relevant microscale parameters including milling of raw materials, wetting of same with
various silicate binders, and evaluation of granular structure using compaction analysis.
2) Development and construction of a prototype mixer-granulator; process studies now in progress.
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Granulation and Droplet Penetration Time (DPT)

Static DPT results were evaluated using a statistical model
to better understand the impact of each variable. The model
showed that milling and amount of prewetting were the two

Project Background Results & Discussion

Submerged arc welding (SAW) is a joining process commonly | Milling & Particle Size Distribution (PSD)
used for applications requiring long welds; it uses an electric arc
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protect the molten metal formed by the electric arc. This flux is fed L p . . y p.OW er). e with uneven powder bed surfaces and high liquid-powder
in front of the arc and forms a protective heap over the weld zone. significant size reduction effects were seen with Dead Burnt contact angles.
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Lincoln Electric (LE) is considering upgrading the granulation 1 0 100 Mixer PrOtOtype
process used to produce SAW flux, with a goal of improving rartcle Size (Hm) The design for a paddle
process yield, granule structure, and facilitating changes between Compaction mixer was provided by
fluxes in use. Flux samples made in the lab were compared to six flux | the previous year’s LE
This project is in its second year and builds on previous work. samples sent by Lincoln Electric. The most similar MBDT | team. The small basin
Thls_yea_rs _work focuses on structural effects of SAW granules sample had a similar process profile: no powder milling, 0% size and ability to 3D print
and implications for processing. prewetting, and K grade silicate binder. Similar samples were parts allowed for a high
also made in the lab using the mixer prototype; each with 0% level of control over the
prewetting and K grade silicate binder, Batch 3 with milled design in addition to rapid
Expenmenta[ Methods fluorspar and Batch 5 with no powder milling. Compaction | |prototyping of paddles
and derlvatlve curves were S|m|Iar foreach. shapes (shown right).
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The use of milled powder is especially 30— o . 4 o = Speed is adjustable and torque is monitored. Binder can be
relevant for capping, i.e., the addition i i N . sy | added to the flux at a controlled rate by utilizing a syringe
of fine powder at the end of the VSSS | 5o Viver boteh 5 pump that feeds the liquid binder through a small opening in
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showed the capability of the mixer to create granules with
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Granulation and Droplet Penetration Time (DPT)
Drop-templated granulation was performed on static powder beds. Compaction results from the DOE and LE flux samples were : :
This enabled direct observation of binder-powder interaction, and compiled into a statistical model, predicting yield stress as a 3
comparison based on drop penetration time. Test variables included function of material and process parameters. In addition to S 60-
pre-milling of raw powders, pre-wetting of same, preparation of the effects of raw powder milling and pre-wetting, the silicate 2
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As a variant of DPT, a moving-bed drop-templated process (MBDT) in the DPT 5 Conclusions
was developed, using a food processor to create a moving bed of study, the DPT : B sk
powder with a pulse of impinging droplets provided by a syringe method was : 2 o ize
pump. shown to be a 1 < % Delaying of calcining, prewetting, and milling of raw powders
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Calcined MBDT granules were compacted in a tablet die, using an lab-scale s 0 "‘?(}:I oo preV|o|u? Senior Dte3|9n tzamst ShOUld. ble df?lble to 0||3t|m!ze
MTS load frame to collect force-displacement data, and converted to formulation T L i ; '"HU granuiation parameters and outcomes Inciuding granule size
compaction curves using a python code developed by Dr. Paul Mort. screening. " -7, cods distribution and gfanule stre.n_gth. For mixer granulatllon, focus
Compaction curve analysis shows structural features including 04| A< should be on binder addition rate and motor tip speed.
deformation yield stress of granules. MBDT granules were compared . o Additionally, the_ mixer basmland paddlles_could_ be redesigned
to LE flux samples to determine how different processing methods to decrease bU'ld'pr over time. Fabricating mixer parts from
affect granule strength and density. POl oozoma s Ty, 02 caoaos | 2 3 4 more durable materials would also be of interest.
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